
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Изохорному нагреванию идеального газа, количество вещества которого постоянно, в координатах p, V соответствует график, показанный на рисунке, обозначенном буквой:

2. Если кинематические законы прямолинейного движения тел вдоль оси Ox имеют вид: $x_1(t) = A + Bt$, где A = 10 м, B = 1,2 м/с, и $x_2(t) = C + Dt$, где C = 45 м, D = -2,3 м/с, то тела встретятся в момент времени t, равный:

3. Почтовый голубь дважды пролетел путь из пункта A в пункт B, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь AB за промежуток времени $\Delta t_1 = 60$ мин. Во втором случае, при встречном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 75$ мин.

Если бы ветер был попутным, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

4. Деревянный шар ($\rho_1 = 4.0 \cdot 10^2 \, \text{кг/м}^3$) всплывает в воде ($\rho_2 = 1.0 \cdot 10^3 \, \text{кг/м}^3$) с постоянной скоростью. Отношение $\frac{F_{\rm c}}{F_{\rm T}}$ модулей силы сопротивления воды и силы тяжести, действующих на шар, равно:

5. Цепь массой m=2,0 кг и длиной l=1,0 м, лежащую на гладком горизонтальном столе, поднимают за один конец. Минимальная работа A_{min} по подъему цепи, при котором она перестанет оказывать давление на стол, равна:

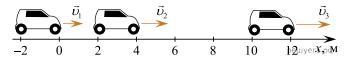
6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой V = 3.0 м/с. Если частота колебаний частиц шнура v = 2.0 Γ ц, то разность фаз $\Delta \phi$ колебаний частиц, для которых положения равновесия находятся на расстоянии l = 75 см, равна:

1)
$$\pi/2$$
 pag 2) π pag 3) $3\pi/2$ pag 4) 2π pag 5) 4π pag

7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{\max} молекул газа обозначено цифрой:

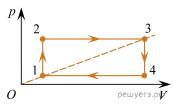
8. Если при изотермическом расширении идеального газа, количество вещества которого постоянно, давление газа уменьшилось на $\Delta p = 80$ кПа, а объем газа увеличился в k = 5,00 раз, то давление p_2 газа в конечном состоянии равно:

1) 20 кПа 2) 30 кПа 3) 40 кПа 4) 50 кПа 5) 60 кПа

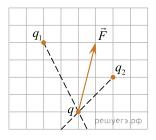

9. В закрытом баллоне находится v=2,00 моль идеального одноатомного газа. Если газу сообщили количество теплоты Q=18,0 кДж и его давление увеличилось в k=3,00 раза, то начальная температура T_1 газа была равна:

1) 280 K 2) 296 K 3) 339 K 4) 361 K 5) 394 K

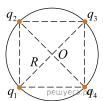
10. На рисунке приведено условное обозначение:

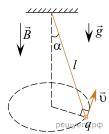

1) колебательного контура 2) конденсатора 3) гальванического элемента 4) катушки индуктивности 5) резистора

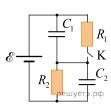
- **11.** Электромагнитное излучение длиной волны $\lambda = 194$ нм падает на поверхность платины, красная граница фотоэффекта для которой $v_{\text{min}} = 1.3 \cdot 10^{15}$ Гц. Максимальная кинетическая энергия фотоэлектрона равна ... эВ. *Ответ запишите в электрон-вольтах, округлив до целых*.
- **12.** С помощью подъёмного механизма груз массой m=0.80 т равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени Δt после начала подъёма груз находился на высоте h=30 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A=0.25 МДж, то промежуток времени Δt равен ... с.
- **13.** На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=215 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}=1,00$ г/см³), равный ... **см**³.
- **14.** На рисунке представлены фотографии электромобиля, сделанные через равные промежутки времени $\Delta t=1.8$ с. Если электромобиль двигался прямолинейно и равноускоренно, то в момент времени, когда был сделан второй снимок, проекция скорости движения электромобиля υ_x на ось Ox была равна ... км/ч.

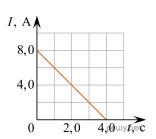


15. По трубе, площадь поперечного сечения которой $S=5.0~{\rm cm}^2$, со средней скоростью $\langle\upsilon\rangle=8.0~{\rm m/c}$ перекачивают идеальный газ ($M=58\cdot10^{-3}~{\rm кг/моль}$), находящийся под давлением $p=390~{\rm k\Pi a}$ при температуре $T=284~{\rm K}$. За промежуток времени $\Delta t=10~{\rm muh}$ через поперечное сечение трубы проходит масса газа, равная ... ${\rm kr}$.


- **16.** Гружёные сани массой M=264 кг равномерно движутся по горизонтальной поверхности, покрытой снегом, температура которого t=0.0 °C. Коэффициент трения между полозьями саней и поверхностью снега $\mu=0.035$. Если всё количество теплоты, выделившееся при трении полозьев о снег, идёт на плавление снега ($\lambda=330$ кДж/кг), то на пути s=400 м под полозьями саней растает снег, масса m которого равна ... г.
- 17. Идеальный одноатомный газ, количество вещества которого v=1,00 моль, совершил замкнутый цикл, точки 1 и 3 которого лежат на прямой, проходящей через начало координат. Участки 1–2 и 3–4 этого цикла являются изохорами, а участки 2–3 и 4–1 изобарами (см. рис). Работа, совершённая силами давления газа за цикл, A=831 Дж. Если в точке 3 температура газа $T_3=1225$ К, то чему в точке 1 равна температу- O ра O


18. На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1 = -24$ нКл, то модуль заряда q_2 равен ...нКл.


19. На окружности радиуса R=3.0 см в вершинах квадрата расположены электрические точечные заряды $q_1=5.0$ нКл, $q_2=q_3=2.0$ нКл, $q_4=-2.0$ нКл (см. рис.). Модуль напряжённости E электростатического поля, образованного всеми зарядами в центре окружности (точка O), равен ... кВ/м.


- **20.** Сила тока в проводнике зависит от времени t по закону I(t) = B + Ct, где B = 2,0 A, C = 1,0 A/c. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1 = 8,0$ с до $t_2 = 12$ с? Ответ приведите в кулонах.
- **21.** В вакууме в однородном магнитном поле, линии индукции которого вертикальны, а модуль индукции B=6,0 Тл, на невесомой нерастяжимой непроводящей нити равномерно вращается небольшой шарик, заряд которого q=0,30 мкКл (см. рис.). Модуль линейной скорости движения шарика $\upsilon=31$ см/с масса шарика m=30 мг. Если синус угла отклонения нити от вертикали $\sin\alpha=0,10$, то чему равна длина l нити равна? Ответ приведите в сантиметрах.

22. В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=100$ мкФ, $C_2=300$ мкФ, ЭДС источника тока $\mathscr{E}=60,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1 = 480$ нм дифракционный максимум третьего порядка ($m_1 = 3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2 = 4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}{
 m Au}$. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~{
 m cyr.}$, то за промежуток времени $\Delta t=8,1~{
 m cyr.}$ распадётся ... тысяч ядер $^{198}_{79}{
 m Au}$.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью $L=1{,}03$ Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.